All ▲lgorithms

All ▲lgorithms

  • Algorithms
  • Categories
  • Libraries
  • Blog

›Artificial Intelligence

Artificial Intelligence

  • Dbscan
  • Isodata
  • Linear regression
  • Logistic regression
  • Neutral style transfer
  • Sat
  • Tsp
  • A star
  • Artificial neutral network
  • Convolutional neutral network
  • Decision tree
  • Factorization machines
  • Gaussian mixtrue model
  • Gradient boostring trees
  • Hierachical clustering
  • Image processing
  • K nearest neighbors
  • K means
  • Minimax
  • Native bayes
  • Nearest sequence memory
  • Neutral network
  • Perceptron
  • Principal component analysis
  • Q learning
  • Random forest
  • Restricted boltzman machine

Backtracking

  • Algorithm x
  • Crossword Puzzle
  • Knight tour
  • M coloring problem
  • N queen
  • Number of ways in maze
  • Partitions of set
  • Permutation of strings
  • Powerset
  • Rat in maze
  • Subset sum
  • Sudoku solve

Bit manipulation

  • Adding using bits
  • Bit divisor
  • Byte swapper
  • Convert numbers to binary
  • Count set bits
  • Flip bits
  • Hamming distace
  • Invert bit
  • Lonely integer
  • Magic number
  • Maximun xor value
  • Power of 2
  • Subset generation
  • Sum binary numbers
  • Sum equals xor
  • Thrice unique number
  • Twice unique number
  • Xor swap

Cellular automaton

  • Brians brain
  • Conways game of life
  • Elementary cellular automata
  • Generic algorithm
  • Langtons ant
  • Nobili cellular automata
  • Von neoumann cellular automata

Computational geometry

  • 2d line intersection
  • 2d separating axis test
  • Area of polygon
  • Area of triangle
  • Axis aligned bounding box collision
  • Bresenham line
  • Chans algorithm
  • Cohen sutherland lineclip
  • Distance between points
  • Graham scan
  • Halfplane intersection
  • Jarvis march
  • Quickull
  • Sphere tetrahedron intersection
  • Sutherland hodgeman clipping

Cryptography

  • Affine cipher
  • Atbash cipher
  • Autokey cipher
  • Baconian cipher
  • Caesar cipher
  • Colummnar cipher
  • Vigenere cipher

Data structures

  • Bag
  • Hashes
  • Linked list
  • List
  • Queue
  • Stack
  • Tree

Divide and conquer

  • Strassen matrix manipulation
  • Closest pair of point
  • Inversion count
  • Karatsuba multiplication
  • Maximum contiguous subsequence sum
  • Merge sort using divide and conquer
  • Quick sort using divide and conquer
  • Tournament method to find min max
  • Warnock algorithm
  • X power y

Dynamic programming

  • Array median
  • Optima binary search tree

Gaming theory

  • Nim next best move game
  • Nim win loss game
  • Grundy numbers kayle game

Graphs

  • Bipartite check
  • Adjacency lists graphs representation

Greedy algorithms

  • Activity selection
  • Dijkstra shortest path
  • Egyptian fraction

Math

  • 2 sum
  • Add polynomials
  • Amicable numbers
  • Armstrong numbers
  • Automorphic numbers
  • Average stream numbers
  • Babylonian method
  • Binomial coefficient
  • Catalan number
  • Check is square
  • Convolution
  • Coprime numbers
  • Count digits
  • Count trailing zeroes
  • Decoding of string
  • Delannoy number
  • Derangements
  • Dfa division
  • Diophantine
  • Divided differences
  • Euler totient
  • Exponentiation power
  • Factorial
  • Fast fourier transform
  • Fast inverse square root

Networking

  • Packet sniffer
  • Determine endianess
  • Validate ip

Numerical analysis

  • Integral
  • Monte carlo
  • Runge kutt

Randomized algorithms

  • Birthday paradox
  • Karger minimum cut algorithm
  • Kth smallest element algorithm
  • Random from stream
  • Random node linked list
  • Randomized quicksort
  • Reservoir sampling
  • Shuffle an array

Searches

  • Binary search
  • Exponential search
  • Fibonacci search
  • Fuzzy search
  • Interpolation search
  • Jump search
  • Linear search
  • Ternay search

Selections algorithms

  • Median of medians
  • Quick select

Sorting

  • Bead sort
  • Bogo sort
  • Bubble sort
  • Bucket sort
  • Circle sort
  • Comb sort
  • Counting sort
  • Cycle sort
  • Flash sort
  • Gnome sort
  • Heap sort
  • Insertion sort
  • Intro sort
  • Merge sort
  • Pipeonhole sort
  • Quick sort
  • Radix sort
  • Selection sort
  • Shaker sort
  • Shell sort
  • Sleep sort
  • Stooge sort
  • Topological sort
  • Tree sort

Strings

  • Aho corasick algorithm
  • Anagram search
  • Arithmetic on large numbers
  • Boyer moore algorithm
  • Finite automata
  • Kasai algorithm
  • Kmp algorithm
  • Levenshteing distance
  • Lipogram checker

Online challenges

  • Coderbyte
  • Code chef
  • Code eval
  • Hackerearth
  • Hackerrank
  • Leetcode
  • Project euler
  • Rosalind
  • Spoj
  • Top coder

No category

  • Average
  • Biggest of n numbers
  • Biggest suffix
  • Fifteen puzzle
  • Jaccard similarity
  • Jose phus problem
  • Lapindrom checker
  • Leap year
  • Magic square
  • Majority element
  • Minimum subarray size with degree
  • No operator addition
  • Paint fill
  • Split list
  • Tokenizer
  • Unique number

Isodata

The Iterative Self-Organizing Data Analysis Technique (ISODATA) method used a set of rule-of-thumb procedures that have incorporated into an iterative classification algorithm. Many of the steps used in the algorithm are based on the experience obtained through experimentation. The ISODATA algorithm is a modification of the k-means clustering algorithm (overcomes the disadvantages of k-means). This algorithm includes the merging of clusters if their separation distance in multispectral feature space is less than a user-specified value and the rules for splitting a single cluster into two clusters. This method makes a large number of passes through the dataset until specified results are obtained.

ISODATA unsupervised classification calculates class means evenly distributed in the data space then iteratively clusters the remaining pixels using minimum distance techniques. Each iteration recalculates means and reclassifies pixels with respect to the new means. Iterative class splitting, merging, and deleting is done based on input threshold parameters. All pixels are classified to the nearest class unless a standard deviation or distance threshold is specified, in which case some pixels may be unclassified if they do not meet the selected criteria. This process continues until the number of pixels in each class changes by less than the selected pixel change threshold or the maximum number of iterations is reached.

Helpful Links

  • Wikipedia
  • Module ISODATA Clustering for Grids / SAGA-GIS Module Library
  • K-means vs. ISODATA
  • ISODATA
Last updated on 2019-7-13 by Abraham Hernandez
← DbscanLinear regression →
  • Helpful Links
All ▲lgorithms
Implementations
C++JavaJavascriptRubyGoMore ...
Libraries Docs
PythonJavaJavascriptMore ...
Community
GithubGitterTwitterInstagramFacebook
More
BlogStickers & T-ShirtsContributingCategories
Powered by Tryhtml
Copyright © 2021 The All ▲lgorithms Project.